
Chapter 1

The C Programming

Language

In this chapter we will learn how to

• write simple computer programs using the C programming language;

• perform basic mathematical calculations;

• manage data stored in the computer memory and disk;

• generate meaningful output on the screen or into a computer file.

The C programming language was developed in the early 1970’s by Ken Thomp-

son and Dennis Ritchie at the Bell Telephone Laboratories. It was designed and

implemented in parallel with the operating system Unix and was aimed mostly as

a system implementation language[1]. It, nevertheless, evolved into one of the most

flexible and widely used computer programming languages today.

In 1989, the American National Standards Institute (ANSI) adopted a document

that standardized the C language. The particular version of the language that it

describes is widely referred to as ANSI C or C89. This document was adopted

in 1990 by the International Organization for Standardization[1] (ISO) as C90 and

was later expanded to the current standard, which is often referred to as C99 .

The C language consists of a small set of core commands and a large number of

library functions that can be incorporated in a program, if necessary. There exist

many excellent books that discuss the C language in detail, starting from the first

book The C Programming Language by B. W. Kernighan and D. M. Ritchie[2]. This

book describes ANSI C and remains today one of the easiest texts on the subject. In

this chapter, we will cover the most basic of the core commands of the language, as

well as those library functions that are useful in developing computational physics

programs.

1.1 The first program

It is a tradition in the culture of C programming that the first program compiled and

executed by a new student of the language is one that prints on the screen the happy

message “Hello World!”[2]. This program, which is shown bellow, demonstrates the

1-1

1-2 CHAPTER 1. THE C PROGRAMMING LANGUAGE

Figure 1.1: The developers of the C programming language, Ken Thompson (sitting) and Dennis
Ritchie, in front of a PDP-11/20 computer at the Bell Labs, in 1972 (Scientific American, March
1999).

basic structure of all programs written in C.

#include <stdio.h> // incorporates libraries

// for input/output

int main(void) // begin main program

{

printf(‘‘Hello World!\n’’); // print on screen Hello World!

return 0; // normal end of program

}

The first command that starts with the ‘#’ sign is not an actual C command but

rather an instruction to the compiler. Such instructions are called preprocessor

directives. In this particular case, the directive

#include <stdio.h>

instructs the compiler to incorporate all those commands that are necessary for

input and output of data. In C lingo, this directive instructs the compiler to in-

corporate the library of functions for the standard input/output. Almost all C

programs start with this directive, since they will require some input and will pro-

duce some output that will need to be communicated to the user!

The second command,

int main(void)

identifies the beginning of the main program. We will postpone the discussion of the

syntax of this command until later, when we will study the definition of functions

1.1. THE FIRST PROGRAM 1-3

in C. For now, it suffices to say that the main program is the set of commands

that appear between two braces (symbols ‘{’ and ’}’) immediately following this

identification.

The first command of the main program,

printf(‘‘Hello World!\n’’);

prints on the screen the message

Hello World!

The command name is printf and stands for print formatted . The command

printf takes a number of arguments, which are enclosed in parentheses. In

this particular example, the only argument is the string of characters “Hello

World \n”, which is printed on the screen. All character strings in C are enclosed

in quotes, which are not part of the string themselves. They denote its beginning

and end and are not printed on the screen. The last part of the character string

is the control character \n, which stands for newline. It also does not appear

on the screen, but is there to instruct the program to begin the next output in the

following line on the screen.

The final command on the program,

return 0;

identifies the point where the program reaches its normal end and control is returned

to the operating system. The number 0 signifies the fact that the program is

finishing normally, without any error messages.

Most lines in this example end with text in plain English that is preceded by the

symbols //. These are comments to help the programmer understand the structure

of the program and are not commands of the language. In fact, the compiler ignores

anything from the symbols // to the end of the line. This construction, which is

actually borrowed from C++, is one of the ways that allows a C programmer to

insert explanatory comments in the program. In a different construction, comments

are inserted between the symbols * and *\, as in the following example:

* This is a comment ...

... and can continue to a second line *\

This second construction allows for comments to occupy more than one lines.

Contrary to several other languages, there are very few and flexible rules in C

that dictate the way a program needs to be typed. For example, empty lines or

spaces are completely ignored by the compiler. The example program discussed in

this paragraph can also be typed as

#include <stdio.h>

int

main(void) {printf(‘‘Hello World!\n’’)

;return;}

with the same result. This gives a programmer the flexibility to format the program

in a way that elucidates its structure, flow, and sequence of commands. However,

this flexibility also necessitates a method to instruct the compiler that the current

command ended and that a new command is about to start. This is achieved by

the semi-colon ‘;’, which appears at the end of the two commands in the main

program in our example. Note that preprocessor directives (such as the #include

command) do not end with semi-colons. Moreover, there is no semi-colon after

the command int main(void) because the following set of lines that are enclosed

in braces is considered part of the same command. Finally, there is no need for

1-4 CHAPTER 1. THE C PROGRAMMING LANGUAGE

a semi-colon at the end of a block of commands enclosed in braces, because it is

implicitly assumed to be there.

Compiling and executing this program depends on the operating system and theCompiling and
Executing a C Program C compiler used. Let us assume, as an example, that we have used an editor to type

the program and save it in a file called hello.c. We use the suffix .c to denote

that this file contains the source of a C program, i.e., the set of C commands that

need to be compiled. In order to convert this program into an executable file

we will invoke the GCC compiler of the GNU project[3] running under the LINUX

operating system. In this case, we will type the command

gcc hello.c -o hello

This invokes the application gcc to compile the C program that is stored in the file

hello.c and stores the output of the operation in the file hello. Note that these

two filename have to be distinct. Had we typed

gcc hello.c -o hello.c

the result of the compilation would have overwritten the C program and we would

not be able to make any changes to it. If, on the other hand, we had omitted the

last part of the command, i.e., if we had typed

gcc hello.c

the result of the compilation would have been stored in the default file a.out.

In order to execute the compiled program, we need to simply type

./hello

where the two symbols ./ preceding the name of the executable file simply instruct

the operating system that the file exists in the current directory. The result of this

command is

Hello World!

1.2 Managing Simple Data with C

One of the most important operations performed by a computer is the storage and

manipulation of data. For archival purposes, data are stored in external devices,

such as magnetic disks and laser disks, which retain the information even after the

power of the computer has been turned off. However, in order for the computer to

manipulate the data, they need to be stored in its random-access memory (RAM),

which the microprocessor has a direct access of.

Within the C language, different types of data are stored and manipulated inData Types

different ways, so that the minimum amount of memory is utilized with the maxi-

mum efficiency. Of all the data types recognized by the compiler, we will consider

here only the four that are the most useful for mathematical computations. They

are:

Type int

float

double

char

integer numbers; ANSI C requires that they cover at least the
range -32767 to 32767
fractional numbers; ANSI C requires that they have at least 6
significant digits and they cover the range from 10−37 to 1037,
with both signs
fractional numbers with at least 10 significant digits and a larger
possible range of values
single characters

Data of type int can be any integer number within the allowed range that does

not include a decimal point. For example, the numbers

1.2. MANAGING SIMPLE DATA WITH C 1-5

32, -18, 0, 13756

are all type int. However, the numbers

12.8, 32.0, 0.0

are not, even though, mathematically speaking, the last two numbers are integers!

Data of type float and double can be any number within the allowed range that

includes a decimal point. For example, the last three numbers can all be type float

or double. We will discuss in more detail the first three data types in Chapter 2,

where we will study the ways in which a computer stores numbers in its memory

and performs numerical calculations.

Choosing whether to use the type float or double in a computational physics Programming
Tipprogram depends on the number of data and calculations involved as well as on

the desired accuracy of the result. Data of type float are less accurate and cover

a smaller range of values, but require half the amount of memory to be stored

and calculations performed with them are typically faster than with data of type

double.

Data of type char can be any single character. For example, the following

’A’ ’B’ ’y’ ’z’

are all valid data of this type. Note that the single characters are enclosed in single

quotes. This is necessary for the language to distinguish between data of type

char and functions defined by the user that may have a name consisting of a single

character. Characters are stored in the computer memory as integer numbers using

a correspondence that was standardized in 1967 under the name of ASCII, which

stands for the American Standard Code for Information Interchange. The ASCII

table of characters and the integer number they correspond to is shown in Appendix

A. Characters 0–33 are not printed on the screen and mostly control the way text is

printed. For example, the control character \n that we saw in the previous section

corresponds to the integer number 13 in the ASCII table.

In a high-level programming language, such as C, we do not store data directly Variables

to particular places in the computer memory. Instead, we define variables to which

we assign the values we want to store and leave the nasty job of manipulating the

computer memory to the compiler and the operating system.

A variable name can consist of any combination of the letters of the English

language, the digits, and the underscore ’_’ but it cannot start with a digit. As an

example, all the following are valid variable names

area, Mass_of_Electron, v_1

but

21_cross_section, +sign, a*

are not. Variable names cannot be any of the words reserved for C commands and

functions. For example, printf is not a valid variable name, because it is a C

command. Variable names are also case specific, which means that the variable

mass is different than the variable Mass. Finally, only the first few characters of

a variable name are recognized by the compiler and the remaining are ignored. In

ANSI C, only the first eight characters specify uniquely a variable. For example, the

variables mass_of_electron and mass_of_proton are indistinguishable in ANSI C,

because they share the same beginning eight characters. In later versions of the C

standard, a variable is uniquely specified by the first 31 characters of its name.

Howlong the name of a variable is affects neither the amount of memory occupied Programming
Tipby the compiled program nor the speed of execution. The variable name appears

only in the source code and is there to make the program easy to understand and

debug. It is, therefore, advantageous to use variable names that are self explanatory

1-6 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include <stdio.h>

* Program to calculate the area of a triangle *\

int main(void)

{

float area; \\ declare float variable area

float height, base; \\ declare more float variables

int sides=3; \\ declare and initialize integer

\\ variable

height=2.5; \\ assign number 2.5 to height

base=3.5; \\ assign number 3.5 to base

area=0.5*height*base; \\ calculate the product

\\ 0.5*height*base

\\ and assign it to variable area

\\ print a message with the result

printf(‘‘The area of this shape with %d sides\n’’, sides);

printf(‘‘is %f\n’’, area);

return 0;

}

rather than ones that are generic or obscure. For example, an appropriate name

for a variable to store the value of Planck’s constant is h_planck and not simply h,

since the latter can be easily misinterpreted to mean “height”. Also, a good name

for a variable to store the root of an algebraic equation is root and not simply x,

since the latter can be misinterpreted to mean the coordinate of a point along the

x-axis.

After choosing the name of a variable, we need to define the type of data it will

carry, i.e., int, float, double, or char, and assign a unique place in the computer

memory where it will be stored. We achieve both functions by declaring the names

and types of variables to the compiler in the beginning of the program. In the body

of the program we can then assign data of the proper type to the variables we have

declared. The example program shown in the following page, which calculates the

area of a triangle, demonstrates the use of variable declarations and assignments.

The first command in the main programDeclarations
and Assignments float area;

declares to the compiler that a place in memory should be reserved for data of type

float and the program will refer to this memory place with the variable name area.

Declarations of variables of the same type can be combined into a single com-

mand, as demonstrated by the second command in the main program

float height, base;

which declares two additional variables of type float. Finally, when declaring a

variable, we have the option of assigning its initial value, as in the following com-

mand

int sides=3;

This command declares that variable sides is of type int and assigns to it (i.e., it

stores in the corresponding memory space) the value 3.

Because we have not initialized the values of the other two variables, height,

and base, it is important that we do it before we use them for the first time in the

program. We achieve this with the following two assignment commands

1.2. MANAGING SIMPLE DATA WITH C 1-7

height=2.5;

base=3.5;

The equal sign (’=’) in these two commands simply means assign to and does not

carry the implications of the equal sign in mathematics. It might be easier to think

of the last two commands as the equivalent of

height←2.5;

base←3.5;

This apparently small distinction becomes really important in understanding as-

signments of the form

x=x+1.0;

where x is a variable of type float. In mathematics, this last command leads to a

contradiction, if viewed as an equation, because cancellation of x leaves 0=1, which

is never satisfied. However, if we view this command as

x←x+1.0;

then we can easily understand its use. It takes the current value stored in the vari-

able x, it increases it by one, and then stores the result again in the same variable

x.

Assignments are used to perform numerical calculations. This is shown in the

following command

area=0.5*height*base;

which calculates the area of the triangle as one-half times the product of its height

to its base and stores it in the variable area. Note the self-explanatory names of

the variables.

The next two commands in the main program print the result of the calculation

on the screen. In the first occasion,

printf(‘‘The area of this shape with %d sides\n’’, sides);

we find the specifier %d, which instructs the compiler to print at this point in

the output the variable sides, which is of type int and follows the double quotes.

Similarly, in the second occasion,

printf(‘‘is %f\n’’,area);

the specifier %f instructs the compiler to print at this point the variable area, which

is of type float and follows the double quotes. The output of these two commands

is

The area of this shape with 3 sides

is 8.75

Very large or very small numbers can be assigned to a variable in a compact form

using the scientific notation. In C, as in most computer languages, the syntax of the

scientific notation is a little different from the corresponding syntax in mathematics.

For example, Avogadro’s constant NA ≡ 6.022 × 1023 mol−1 can be assigned to a

C variable with the line of code

float N_Avogadro=6.022e23; \\ in mol^{-1}

Note that the symbol e, which stands for exponent, takes the place of the symbols

×10 in the usual scientific notation in mathematics. For very small numbers that

require a negative power of ten, the syntax is very similar, with a negative sign

preceding the exponent. For example, Planck’s constant h = 6.627×10−34 m2 kg s−1

can be assigned to a C variable with the command

float h_Planck=6.627e-34; \\ in m^2 kgr s^{-1}

In a computational physics program, we often wish to store a physical constant Constants

in a place in the computer memory and use it throughout the algorithm. For ex-

ample, in a computer program that deals with the radioactive decay of 14C to 14N

1-8 CHAPTER 1. THE C PROGRAMMING LANGUAGE

we might want to store the halftime of this reaction, which is approximately equal

to 5730 years. We can achieve this by declaring a variable and assigning the value

of the halftime to it, e.g.,

double halftime_C14=5730.0; \\ halftime in years

However, the value of this variable will not change throughout the program. C

allows for a different declaration of such constants, which improves the speed of

execution. For the example discussed above, the declaration would be

const double halftime_C14=5730.0; \\halftime in years

We can achieve the same result also using, in the beginning of the program, the

preprocessor directive

#define halftime_C14 5730.0 \\ halftime in years

Note that there is no equal sign between the name of the constant and its value.

Moreover, there is no semicolon at the end of this line, because this is not a C com-

mand but rather an instruction to the compiler. During compilation, the compiler

literally replaces all occurrences of halftime_C14 in the source code with 5730.0.

A second advantageous use of constants in a computational physics program isProgramming
Tip in identifying various parameters of the numerical algorithm that may be different

between different applications. These may include the limits of the domain of solu-

tion of an equation, the number of equations solved, or the accuracy of the solution.

For example, we can write a general algorithm that solves a system of Neq linear

equations and precede the C program by a compiler directive such as

#define Neq 3

which specifies that in this particular occasion the system involves only 3 linear

equations. If, in a different application, we need to solve a system of 5 linear equa-

tions, we will only need to change the directive to

#define Neq 5

and leave the rest of the program unchanged. This technique improves the readabil-

ity of the program and reduces the chances of introducing inadvertently mistakes

to an algorithm that was borrowed from a different application.

1.3 Formatted Input and Output

As we discussed in the previous section, the command printf controls the outputOutput
on the Screen of a C program on the computer screen. The general syntax of the command is

printf(‘‘control string’’, variable1, variable2, ...)

The control string is enclosed in double quotes and consists of printable characters,

such as Hello World!, of specifiers, such as %d and %f, and of control characters,

such as \n. For each specifier, there is a variable of the corresponding type following

the control string.

The specifiers in the control string determine the position and format of print-Specifiers

ing variables of different types. The most useful ones for computational physics

programs and the data types they correspond to are

Specifier %d

%f

%e

%g

%c

data of type int

data of type float or double in decimal notation
data of type float or double in scientific notation
equivalent to %f or %g depending on the value of the number
data of type char

We have already seen the use of the specifiers %d and %f in the previous section.

For example, the lines of code

1.3. FORMATTED INPUT AND OUTPUT 1-9

int Neq=3;

float pi=3.1415927;

printf(‘‘The number of equations is %d\n’’,Neq);

printf(‘‘and the value of pi is %f\n’’,pi);

produce the output

The number of equations is 3

and the value of pi is 3.141593

More than one specifiers can be combined in a single printf statement, as long as

they match the number and type of the variables that follow the control string. For

example, the line

printf(‘‘Equations: %d; pi=%f\n’’,Neq,pi);

produces the output

Equations: 3; pi=3.141593

For very large or very small numbers, we often obtain more meaningful results

if we use the %e specifier. For example, if we assign the mass of the electron to a

variable of type double as in

double Mass_electron=9.11e-31; \\ kgr

then printing it with the command

printf(‘‘Mass of electron=%f kgr\n’’,Mass_electron);

generates the output

Mass of electron=0.000000 kgr

If, on the other hand, we use the command

printf(‘‘Mass of electron=%e\n’’,Mass_electron);

the output will be

Mass of electron=9.110000e-31 kgr

It is important to emphasize that the specifier required for printing a variable Programming
Tipis determined by the type of the variable, e.g., whether it is of type int or float,

and not by the value assigned to the variable. For example, the following two lines

of code

float days_in_year=365.0;

printf(‘‘The number of days in a year is %d\n’’,days_in_year);

are not correct. The variable days_in_year is of type float, even though its value

is an integer number, whereas the specifier %d used in the printf statement is for

variables of type int. The output of these lines of code is

The number of days in a year is 1081528320

which is clearly not what was intended.

There are a number of ways in which the output of variables of type int can be

modified. The following few lines of code demonstrate the most useful modifications

int days_in_year=365;

printf(‘‘#%d#\n’,days_in_year);

printf(‘‘#%5d#\n’,days_in_year);

printf(‘‘#%-5d#\n’,days_in_year);

The output of these commands is

#365#

365#

#365 #

In the first printf statement, only the three digits of the number stored in the

variable days_in_year are being printed on the screen, with no leading or trailing

spaces. In the second printf statement, the integer number 5 between the symbols

% and d specifies the minimum number of columns being allocated for the output

of the variable. Because the value assigned to this variable has three digits, there

1-10 CHAPTER 1. THE C PROGRAMMING LANGUAGE

are two additional spaces to the left of the number 365. Finally, in the last printf

statement, the minus sign after the symbol % generates an output of the value

assigned to the variable days_in_year that is left justified.

The specifiers %f and %e can be modified in a very similar way to control the

format of the output of floating numbers. As an example, the following lines of code

float pi=3.1415927;

printf (‘‘#%f#\n’’,pi);

printf (‘‘#%e#\n’’,pi);

printf (‘‘#%9.3f#\n’’,pi);

printf (‘‘#%9.3e#\n’’,pi);

generate the output

#3.141593#

#3.141593e+00#

3.142#

#3.142e+00#

In the last two printf statement, the number 9 after the symbol % specifies the

minimum number of columns alocated for the output of the variable pi, whereas

the number 3 after the decimal point specifies the number of digits that will be

printed to the right of the decimal point. Note that in the case of the %e specifier,

the total number of columns includes the column needed for printing the symbol e

as well as the exponent.

The control string in a printf statement can also incorporate a number ofControl
Characters control characters that provide additional flexibility in formating the printing of

text and variables. One of these characters is \n, which instructs the program to

continue printing in a new line. Some other useful control characters are listed

below

Control
Character

\b

\t

\\

\’

\"

backspace
horizontal tab
backslash (\)
single quote (’)
double quote (’’)

Note that the last three control characters allow us to print the symbols \, ’, and

’’ without confusing them with other control characters of the C language.

Many programs require input from the user to specify, for example, initial valuesInput
from the keyboard or other parameters of the calculation. This task is achieved with the command

scanf. Its general syntax is similar to that of the command printf, i.e.,

scanf(‘‘control string’’, &variable1, &variable2, ...)

with the control string consisting of printable characters, of specifiers, and of control

characters. Note that, contrary to the command printf, the variable names in this

case are preceded by the symbol &. We will discuss the reason for this in the section

about pointers.

The main specifiers for the command scanf that are useful in computational

physics programs are

Specifier %d

%f, %e
%lf, %le
%c

Input will be interpreted as type int

Input will be interpreted as type float

Input will be interpreted as type double

Input will be interpreted as type char

The use of the command scanf is illustrated with the program in the following

1.4. EVALUATING MATHEMATICAL EXPRESSIONS WITH C 1-11

#include <stdio.h>

/* Program to convert degrees F to degrees C */

int main(void)

{

float degrees_F; // Degrees Fahrenheit

float degrees_C; // Degrees Celsius

printf("Degrees Fahrenheit? ");

scanf("%f",°rees_F); // Input from user Degrees F

// Convert to Degrees C

degrees_C=(degrees_F-32.0)*5.0/9.0;

// Output result

printf("%f degrees F are equal to ",degrees_F);

printf("%f degrees C\n",degrees_C);

return 0;

}

page, which converts a temperature value from degrees Fahrenheit to degrees Cel-

sius. The first two lines of the main program declare two variables of type float

in which to store the value of the temperature expressed in the two temperature

scales. Note the use of the comments following each declaration to explain the use

of the variables.

The following command

printf("Degrees Fahrenheit? ");

prints the message

Degrees Fahrenheit?

and the command

scanf("%f",°rees_F); // Input from user Degrees F

waits for input from the user and stores it in the variable named degrees_F. The

program then computes the equivalent value of the temperature in the Celsius scale

using the assignment

degrees_C=(degrees_F-32.0)*5.0/9.0;

and outputs the result on the screen.

1.4 Evaluating Mathematical Expressions with C

The C programming language offers a wide variety of mathematical functions that

we can use in performing numerical calculations. The basic algebraic manipula-

tions, i.e., addition, subtraction, multiplication, and division, are performed with

the symbols +, -, *, and \, respectively. For examples, the command

a=b+c;

adds the values of the variables b and c and assigns the result to the variable a,

whereas the command

a=b/c;

divides the value of the variable b by the value of the variable c and stores the result

in the variable a.

There are a few shortcuts for common mathematical expressions that are incor-

porated in the syntax of the C language and not only result in a compact source

code but often affect the speed of computations as well. For example, the commands

f++;

1-12 CHAPTER 1. THE C PROGRAMMING LANGUAGE

and

f--;

are equivalent to

f=f+1;

and

f=f-1;

respectively. The symbols ++ and -- are called the increment and decrement oper-

ators, respectively. Moreover, the following two commands are equivalent

f+=a;

f=f+a;

as are the commands

f-=a;

f=f-a;

and

f*=a;

f=f*a;

The C language follows a well defined set of rules regarding the order of evalu-Operator
Precedence ation of different operators that appear in a complicated mathematical expression.

For example, among the operators that we discuss here, the increment and decre-

ment operators (++ and --) have the highest precedence, followed by the operators

for multiplication and division (* and /), and then by the operators for addition and

subtraction (+ and -). When two or more operators of the same precedence appear

in an expression, then the C language evaluates them in the order they appear,

from left to right. As an example, in evaluating the expression

c=2.0+3.0*5.0;

the multiplication 3.0*5.0 is performed first and the product is then added to 2.0

for a final result of 17.0.

As in mathematics, we can change the ordering with which various operators

in an expression are evaluated by grouping together complicated expressions using

parentheses. For example, the command

c=(2.0+3.0)*5.0;

assigns to the variable c the value 25.0, because the parentheses force the addition

to be performed before the multiplication. Parentheses can be nested at different

levels to allow for more flexibility in the ordering of evaluation of a mathematical

expression. For example, the command

c=(0.8+0.2)/(2.0*(1.0+1.0)+1.0);

assigns to the variable c the value 0.2.

For more complicated mathematical operations, the C language makes use of anMathematical
Functions external library of mathematical functions. In order to make use of them, we need

to add to the beginning of the source code the preprocessor directive

#include <math.h>

In many implementations of the C compiler, we also need to alter the command

with which we compile a program whenever we are using this library of mathemat-

ical functions. For example, if we saved the source code of a program that uses

mathematical functions in the file math_calc.c, then we would compile it with the

command

gcc math_calc.c -o math_calc -lm

The option -lm at the end of this command links the library with mathematical

functions to the compiler.

The following table summarizes the most common of the functions in the math-

1.5. BRANCHING 1-13

ematical library. In all cases, the arguments of the functions are variables of type

float or double and the result should also be stored in variables of type float or

double.

Function fabs(a)

sqrt(a)

pow(a,b)

sin(a)

cos(a)

tan(a)

atan(a)

log(a)

log10(a)

absolute value of a

square root of a

a to the b-th power (i.e., ab)
sine of a (in radians)
cosine of a (a in radians)
tangent of a (a in radians)
arc (in radians) with tangent a

natural logarithm of a (i.e., ln a)
logarithm base 10 of a (i.e., log10 a)

Note in particular that the argument of the trigonometric functions sin, cos, and

tan is in radians and not in degrees.

It is possible to mix variables or constants of different data types in a single Programming
Tipexpression; the C compiler typically makes the appropriate conversion and calculates

the correct result. There is, however, the potential of introducing in this way

mistakes in the program that are very difficult to spot and correct. This is especially

true when data of type int are mixed with data of type float or double. Consider

for example the two lines of code

float c,d=0.1;

c=(1/2)*d;

The second command will assign zero to the variable c and not 0.05 as we might

have thought. This happens because the ratio (1/2) is written as a ratio of integer

numbers and C evaluates the result as an integer number before multiplying it to

the value of the variable d. The integer part of the ratio (1/2) is zero and hence

the result of this expression is zero. Had we written

float c,d=0.1;

c=(1.0/2.0)*d;

then the second command would have assigned the correct value 0.05 to the variable

c.

1.5 Branching

A numerical calculation often follows different paths depending on the values of

quantities that are evaluated as part of the calculation itself. For example, the

roots of the quadratic equation

ax2 + bx + c = 0 (1.1)

can be real or complex depending on the value of the discriminant

∆ ≡ b2 − 4ac . (1.2)

If ∆ ≥ 0, then the equation has two real roots that are not necessarily distinct,

x1,2 =
−b±

√
∆

2a
, (1.3)

whereas if ∆ < 0, the equation has two complex roots

x1,2 = −
b

2a
± i

√
∆

2a
. (1.4)

1-14 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include <stdio.h>

#include <math.h>

/* Program to solve the quadratic equation

a*x*x+b*x+c=0 */

int main(void)

{

float a,b,c; // Parameters of quadratic

float Delta; // Discriminant

float root1,root2; // Two real roots

float root_real; // Real part of complex roots

float root_imag; // Abs value of imaginary part

// ... of complex roots

printf("a, b, c? ");

scanf("%f %f %f",&a, &b, &c); // Input the parameters

Delta=b*b-4.0*a*c; // Evaluate Discriminant

if (Delta>=0) // Two real roots

{

root1=0.5*(-b+sqrt(Delta))/a;

root2=0.5*(-b-sqrt(Delta))/a;

printf("The quadratic has two real roots: \n");

printf("%f and %f\n",root1,root2);

}

else // Two complex roots

{

root_real=-0.5*b/a;

root_imag=0.5*sqrt(-Delta)/a;

printf("The quadratic has two complex roots: \n");

printf("%f + i%f\n",root_real,root_imag);

printf("%f - i%f\n",root_real,root_imag);

}

return 0;

}

A computer program that solves such a quadratic equation requires, therefore, two

different ways of displaying the solution, depending on the value of the discriminant.

In the C language, this type of branching is achieved with the if statement, as

illustrated in the program above.

The program starts by asking the user to input the values of the three parameters

of the quadratic, a, b, and c and then uses them to evaluate the discriminant Delta.

At this point, the flow of the calculation depends on the value of the discriminant.

For positive discriminants, i.e., when Delta>=0, the program evaluates the two real

roots and prints the result. On the other hand, for negative discriminants, the

program calculates the real parts of the two complex roots as well as the absolute

values of their imaginary parts and prints the result.

The general syntax of the if statement isConditions

if (condition)

command 1

else

command 2

1.5. BRANCHING 1-15

Figure 1.2: An example of logical operator precedence in the C language. The hatch-filled areas
in the two graphs show the regions of the parameter space where the two shown conditions are
true.

If the condition in the parenthesis that follows the if statement is satisfied, then

command 1 is executed, otherwise command 2 is executed.

For the programs that we will be considering in this book, the condition is any

logical expression that can be true or false. This often involves checking the validity

of mathematical inequalities, as in the example discussed above. Additional exam-

ples of conditions that involve mathematical expressions are given in the following

table:

x<a

x>a

x<=a

x>=a

x==a

x!=a

x is less than a

x is greater than a

x is less than or equal to a

x is greater than or equal to a

x is equal to a

x is not equal to a

Note that the condition for the equality of two numbers involves the double-equal

sign (==), which is different than the assignment operator (=) that we discussed

before.

We can create more complicated conditions by combining simple expressions Logical
Operatorswith a number of logical operators. If we use A and B to denote simple logical

conditions, then some useful logical operators in order of decreasing precedence are

!A

A && B

A || B

True if A is false (Logical NOT)
True if both A and B are true (Logical AND)
True if either A and B are true (Logical OR)

For example, the condition

x>-1.0 && x<1.0

is true only if x has a value in the range −1 < x < 1. On the other hand, the

condition

x<y || x>-1.0 && x<1.0

is true if either x has a value in the range −1 < x < 1 or if it is smaller than y. As in

the case of mathematical expressions, we can change the order with which different

logical conditions are evaluated by using parentheses. For example, we can change

the previous condition by adding parentheses as

(x>y || x>-1.0) && x<1.0

This last condition will always be false if x ≥ 1, it will always be true if −1 < x < 1,

but will also be true if x ≤ −1, as long as x < y. Figure 1.2 illustrates the difference

1-16 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include <stdio.h>

#include <math.h>

/* Program to calculate the factorial of a number */

int main(void)

{

int number; // number to calculate factorial of

int factorial; // the factorial

int index; // index for looping

printf("Number? ");

scanf("%d",&number); // input the number

if (number<0) // no factorial for negatives

{

printf("The number %d is less than zero",number);

}

else // normal case

{

factorial=1; // initialize product

// and multiply integers<=number

for (index=1;index<=number;index++)

factorial*=index;

// output the result

printf("The factorial of number %d ",number);

printf("is %d\n",factorial);

}

return 0;

}

between the two conditions discussed in this example.

1.6 Loops

One of the most useful aspects of a computer is its ability to repeat many times

a simple task. For example, calculating the factorial of a number N using the

equation

N ! =

N
∏

i=1

i (1.5)

requires the evaluation of N products, which can be a daunting task for a human if

N acquires large values. The procedure of repeating a task multiple times is called

looping.

The C language offers three different ways that we can use to perform loops.

If the number of repetitions is known a priori , then we can use the command for

that has the following general syntax:

for (initialization; condition; update)

command

In the beginning of the loop, the initialization is evaluated. Then the command is

repeated until the condition is met, with the update being evaluated at the end of

each repetition.

The example program shown above illustrates the use of the command for in

1.6. LOOPS 1-17

calculating the factorial of a number using equation (1.5). The command

for (index=1;index<=number;index++)

causes the program first to initialize the variable index to unity and then repeat

the command

factorial*=index;

for as long as the value of index is smaller than the value of number. After each

repetition, the value of index is increased by one.

Note that there is no semicolon after the closing parenthesis, because the com-

mand that follows is considered as an integral part of the for statement. If each

repetition requires the execution of more than one commands, then we enclose the

set of commands that need to be repeated in curly brackets. For example, we could

change the loop in the previous program by adding an extra command that verbal-

izes to the user the progress of the algorithm, e.g.,

for (index=1;index<=number;index++)

{

factorial*=index;

printf("Done with %d multiplications\n",index);

}

In this case, both commands within the curly brackets will be repeated during the

loop.

If the number of repetitions in a loop is not known a priori but a set of commands

needs to be repeated while a condition is true, then we can use the while command.

The general syntax of the command is

while (condition)

command

It causes the program to repeat the command while the condition is true. As in

the case of the for loop, the command can be either a single command or a set of

commands enclosed in curly brackets.

For example, the following lines of code calculate the remainder of the integer

division between the numbers Num1 and Num2 by subtracting the latter from the

former until the result becomes less than zero

scanf("%d %d",&Num1,&Num2);

while (Num1>=0)

Num1-=Num2;

printf("The remainder is %d\n",Num1+Num2);

Note again the absence of a semicolon following the closing parenthesis in the while

command.

In both the for and the while commands, the condition that determines whether

the looping commands continue to be repeated is checked in the beginning of each

repetition. As a result, if the condition is false initially, then the looping commands

are never executed. In several situations, however, it is useful for the condition

to be executed at the end of each repetition. We can achieve this by using the

do - while command. The general syntax of this command is

do

command

while (condition);

In this case, the command is executed as long as the condition is true. However,

because the condition is checked at the end of its repetition, the command will be

executed at least once, even if the condition is false initially. Note the semicolon

following the closing parenthesis that terminates the while command.

1-18 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include <stdio.h>

#include <math.h>

/* Program to calculate the sum of the series

1+1/2+1/4+...+1/2^n+...

to a required accuracy */

#define ACCURACY 1.e-6 // level of required accuracy

int main(void)

{

float n=1; // index of sum

float term; // each term in sum

float sum=0.0; // current value of sum

do // keep on adding terms

{

term=pow(2.0,-n); // calculate current term

sum+=term; // add to the sum

n++; // and go to next term

} // as long as haven’t reached

// accuracy

while (fabs(term/sum)>ACCURACY);

// print result

printf("The result is %f\n",sum);

return;

}

The above program uses the do - while command to calculate the converging

infinite sum
∞
∑

n=1

= 1 +
1

2
+

1

4
+ ... +

1

2n
+ ... (1.6)

until the first term that contributes to the sum a fractional value smaller than the

constant ACCURACY. In this case, it is to our advantage to have the condition checked

at the end of each repetition, because at least one terms needs to be calculated and

the condition involves the calculated term.

Note in this program the use of the constant ACCURACY that we introduced usingProgramming
Tip the preprocessor directive

#define ACCURACY 1.e-6 // level of required accuracy

which clarifies in plain English the condition in the do - while loop.

The set of commands that are repeated in a loop may incorporate a second loop,Nesting

which may incorporate a third loop, and so on. This is called loop nesting and

can extend for several levels. The only requirement is that each inner loop much

terminate before an outer loop does. This is illustrated with the example in the

following page.

1.7 Arrays

Earlier in this chapter, we discussed variables of different type that can be used

in storing data in the computer memory. Their only limitation is the fact that

each variable can store only a single piece of data. There are many occasions in

physics, however, when the amount of information we wish to store is so vast that

1.7. ARRAYS 1-19

#include<stdio.h>

/* Prints the multiplication tables of the numbers between

1 and 10 to illustrate the use of nested loops */

int main(void)

{

int i,j;

for (i=1;i<=10;i++) // i-loop

{ // --------------

// j-loop |

for (j=1;j<=10;j++) // --------| |

{ // | |

printf("%2d x %2d = %3d\n",i,j,i*j); // | |

} // --------- |

// |

} // --------------

return 0;

}

it is impractical for us to define a new variable for each piece of data. Consider

for example, the detector in an X-ray telescope that has observed a cosmic source

for 10 hours but has recorded the number of photons it detected in intervals of one

second. If we wish to calculate the average rate with which photons were detected,

then we will need to store all this information in the computer memory. Since there

are 36,000 seconds in 10 hours, this will require defining 36,000 different variables!

The C language offers several ways of handling complicated and large data struc-

tures. Here we will discuss only the arrays, which are the most commonly used

structures in a computational physics program.

An array is a data structure that allows us to store in the computer memory Declaration
and usea large amount of data of the same type. As with all other variables, we have to

declare an array before we can use it. Consider, for example, a program in which we

wish to store the energy it takes to remove an electron from a neutral atom for the

first six elements; this is called the ionization energy. We will need an array of type

float with six elements in order to store the six different values of the ionization

energy. We can declare this array with the command

float ioniz_energy[6]; // ionization energy in eV

Note that following the name of the array we declared in the square brackets the

number of its elements.

When declaring an array, we may initialize its elements by enclosing a list of

values in curly brackets separated by commas. For the above example, we could

write

float ioniz_energy[6]={13.6, 24.6, 5.4, 9.3, 8.3, 11.3};

in order to initialize the array with the ionization energies of the elements from

hydrogen to carbon.

Following its declaration, we can use each element of the array in the same way

we would have used any variable of the same type. The only potentially confusing

issue with arrays in the C language is the fact that we use the index [0] to refer to

the first element of the array, the index [1] to refer to the second element, and so

on. For example, the command

printf("%f %f\n",ioniz_energy[0],ioniz_energy[5]);

generates the output

13.600000 11.300000

1-20 CHAPTER 1. THE C PROGRAMMING LANGUAGE

Figure 1.3: A visual representation of how a two dimensional array is stored sequentially in the
computer memory.

In general, if an index has N elements, then its first element will always correspond

to index [0] and its last element to index [N-1].

We can declare an array with more than one dimensions by adding to its nameMultidimensional
Arrays the number of elements in each dimension enclosed in square brackets. For example,

we can store the 3× 3 identity matrix

I =





1 0 0
0 1 0
0 0 1



 (1.7)

in a two dimensional array that we declare using the command

float identity[3][3];

As in the case of one dimensional arrays, the top left element of the identity matrix

is identity[0][0] and the bottom right element is identity[2][2].

A multi-dimensional array is stored in the computer memory in a sequential way,

as shown in the figure. The first element identity[0][0] is stored first, followed

by all the other elements of the first row. Then the elements of the second row

are stored, and the same procedure continues until the last element of the array

occupies the last allocated memory space.

We can make use of the sequential storage of a multi-dimensional array when

we initialize the values of its elements. For example, the command

float identity[3][3]={1.0, 0.0, 0.0,

0.0, 1.0, 0.0,

0.0, 0.0, 1.0};

declares the 3×3 array identity and initializes its elements to those of the identity

matrix.

It is important to emphasize here that the standard libraries of the C language do

not incorporate commands that perform operations between arrays. For example,

the following lines of code

float A[3][3],B[3][3],C[3][3];

C=A+B; \\ does not work!

do not store in array C the sum of the arrays A and B. In order to perform a matrix

addition, we need to add one by one all the elements of the arrays, as in the example

shown in the following page.

1.8 Functions

As we discussed in the beginning of this chapter, a key feature of the C language

is the small number of its core commands and extensive use of external functions.

We are already familiar with the various mathematical functions that are part of

the external library that we invoke with the preprocessor directive

#include <math.h>

